MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
MNEDL
Multifunctional Nanomaterials & Energy Device Lab.
Multifunctional Nanomaterials & Energy Device Lab.
Multifunctional Nanomaterials & Energy Device Lab.
2D Semiconductor TMDCs Synthesis for large scale
&
Nanomaterial Application Devices
(Transistor, Photo-detector)
▶ Background and Motivation
The electronics and optoelectronics have been promising future research topic. Especially, Each low dimensional semiconductor has outstanding characteristics about those in the materials world. 2D materials without atomic bonds in the Z-axis are superior in electron characteristics. Because TMDCs have complementary optical absorption properties as well as electronic properties, those are also called as materials of dream. Our laboratory will demonstrate electronic and optoelectronic devices based on 2D materials with noble physical properties and break through the limitations that current industry faces.
▶ Large Scale TMDC growth using Metal-Organic Chemical Vapor Deposition
Metal-Organic CVD growth provides a unprecedented direction of high-quality monolayer TMDC film for the integration of multiple device patterning with different 2D material compositions and electrical properties on single substrate. Metal Source and Gas are precisely Controlled by individual MFCs
▶ Hybrid optoelectronic : 2D-0D photodetector
The 2D-0D hybrid optoelectronic system maximizes the photodetector characteristics such as responsivity (R), Detectivity (D*) employing the advantages of the light absorption of quantum dot material and the high mobility of two-dimensional material.
▶ 2D Hetero-structure Electronics I
We demonstrate that thermal treatment under ambient condition precisely controls the thickness of BP flake.
The thermal etching method utilizes the chemical reactivity of BP surface with oxygen and water molecules by the repeated formation and evaporation of phosphoric acid during thermal annealing. Field effect transistor of the thickness-modulated BP sheet by thermal etching method shows a high hole mobility and a high on−off ratio. The stability of the BP devices remained for 1 month under ambient condition without an additional protecting layer, resulting from the preservation of active BP layers below native surface phosphorus oxide.
▶ 2D Hetero-structure Electronics II